SEM I

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Introduction to Microbiology and Microbial Diversity	Semester I	Theory	Core T-1	4

Broad Topic	Lecture	Lecture Topic
	Number	
History and	Lecture 1	History and development of microbiology,
development		Theory of Spontaneous generation, Germ
of		theory of disease
Microbiology	Lecture 2	Contributions of Leeuwenhoek, Koch, Pasteur,
		Jenner and Fleming etc.
	Lecture 3	An over view of the Scope of microbiology
	Lecture 4	Systems of Classification
	Lecture 5	Basic idea about Hackle and Whittaker's
Diversity of		kingdom concept
Microbial World	Lecture 6	Basic idea about domain concept of Carl Woose
	Lecture 7	General characteristics and representative members of different groups: Cellular microorganisms (Archaea, Bacteria, Algae, Fungi and Protozoa)
	Lecture 8	General characteristics and representative members of different groups: Acellular microorganisms (Viruses, Viroids, Prions)
Microscope	Lecture 9	Principle of Bright Field Microscope, Dark Field Microscope, Phase Contrast Microscope
	Lecture 10	Transmission Electron Microscope, Scanning Electron Microscope
	Lecture 11	General characteristics of algae
	Lecture 12	Vegetative, asexual and sexual reproduction
	Lecture 13	Group- Chlorophyta,
Phycology	Lecture 14	Group-, Xanthophyta
	Lecture 15	Group- Cyanophyta
	Lecture 16	Applications of algae in agriculture, industry, environment and food
	Lecture 17	General characteristics of fungi
	Lecture 18	Asexual & sexual reproduction
Mycology	Lecture 19	Heterokaryosis, heterothallism and
		parasexual mechanism
	Lecture 20	Economic importance of Fungi
	Lecture 21	General characteristics of Protozoa
Protozoa	Lecture 22	Amoeba, Paramecium, Plasmodium
	Lecture 23	Economic importance of protozoa

Course / Paper Name	Class	Course Type	Course Code	Credit
Introduction to	Semester	Practical	Core P-1	2
Microbiology &	Ι			
Microbial Diversity				

Exp. Number	Class Plan	No. of Classes allotted	Experiment Name
Exp. 1	Week 1	1	Microbiology Laboratory Management and Biosafety
Exp. 2	Week 2	2	To study the principle and applications of important instruments (autoclave, incubator, hot air oven, centrifuge, light microscope, pH meter) used in the microbiology laboratory
Exp. 3	Week 3	2	Preparation of culture media (Nutrient Broth an Nutrient Agar) for bacterial cultivation
Exp. 4	Week 4	1	Sterilization of medium using Autoclave and assessment for sterility
Exp. 5	Week 5	1	Sterilization of glassware using Hot Air Oven
Exp. 6	Week 6	1	Sterilization of heat sensitive material by filtration
Exp. 7	Week 7	2	Isolation and enumeration of bacteria from air
Exp. 8	Week 8	1	Study of <i>Rhizopus, Penicillium, Aspergillus</i> using permanent mounts
Exp. 9	Week 9	1	Study of <i>Spirogyra, Chlamydomonas</i> using permanent Mounts
Exp. 10	Week 10	1	Study of <i>Paramecium</i> , <i>Plasmodium</i> using permanent mounts

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Bacteriology	Semester 1	Theory	Core T-2	4

Broad Topic	Lecture	Lecture Topic
	Number	
	Lecture 1	Cell size, shape and arrangement, glycocalyx,
		capsule, flagella, endoflagella, fimbriae and pili.
	Lecture 2	Cellwall: Composition and detailed structure of
		Gram-positive and Gram-negative cell walls,
		Archaebacterial cell wall
	Lecture 3	Gram and acid fast staining mechanisms,
Cell		lipopolysaccharide (LPS), sphaeroplasts,
organization		protoplasts, and L-forms. Effect of antibiotics and enzymes on the cell wall.
	Lecture 4	Cell Membrane: Structure, function and
		chemical composition of bacterial and archaeal
		cell membranes.
	Lecture 5	Cytoplasm: Ribosomes, mesosomes, inclusion
		bodies, nucleoid, chromosome and plasmids
		Endospore: Structure, formation, stages of
		sporulation.
	Lecture 6	Pure culture isolation: Streaking, serial dilution
Do otoriological	Lesterne 7	and plating methods
techniques	Lecture 7	Cultivation, maintenance and
teeninques	Looturo 8	Cultivation of apparabic bostoria, and appagaing
	Lecture o	non-culturable bacteria.
	Lecture 9	Nutritional requirements in bacteria and
		nutritional categories
	Lecture 10	Culture media: components of media, natural
		and synthetic media, chemically defined media,
		complex media, selective, differential, indicator,
Growth and	T , 11	enriched and enrichment media
Nutrition	Lecture 11	Physical methods of microbial control: heat, low
		temperature, nign pressure, nitration,
	Leoturo 10	Chemical methods of microbial control.
	Lecture 12	disinfectants types and mode of action
		uisinicetanto, types and mode of action.

	Lecture 13	Asexual methods of reproduction
Reproduction	Lecture 14	Logarithmic representation of bacterial
in Bacteria		populations
	Lecture 15	Phases of growth, calculation of generation time
		and specific growth rate.
	Lecture 16	Aim and principles of classification, systematics
Bacterial		and taxonomy
Systematics	Lecture 17	Concept of species, taxa, strain; Characters
		used in bacterial systematic
	Lecture 18	Differences between eubacteria and
		archaebacteria
	Lecture 19	Archaebacteria: General characteristics, suitable
Important		example and economic importance.
archaeal and	Lecture 20	Eubacteria: General characteristics with suitable
eubacterial		example.
groups	Lecture 21	Gram Negative: Non proteobacteria, Alpha
		proteobacteria, Beta proteobacteria, Delta
		proteobacteria, Epsilon proteobacteria, Zeta
		proteobacteria.
	Lecture 22	Gram Positive: Low G+ C (Firmicutes), High G+C
		(Actinobacteria). Cyanobacteria: An Introduction

Course / Paper Name	Class	Course Type	Course Code	Credit
Bacteriology	Semester I	Practical	Core P-2	2

Exp.	Class	No. of	
Number	Plan	Classes	Experiment Name
		allotted	
Exp. 1	Week 1	2	Preparation of different media: synthetic media BG-
			11, Complex media-Nutrient agar, McConkey agar,
			EMB agar.
Exp. 2	Week 2	1	Simple staining
Exp. 3	Week 3	1	Negative staining
Exp. 4	Week 4	1	Gram's staining
Exp. 5	Week 5	1	Acid fast staining-permanent slide only.
Exp. 6	Week 6	1	Endospore staining.
Exp. 7	Week 7	2	Isolation of pure cultures of bacteria by streaking
			method.
Exp. 8	Week 8	2	Preservation of bacterial cultures (slant / stab).
Exp. 9	Week 9	2	Estimation of CFU count by spread plate
			method/pour plate method.
Exp. 10	Week 10	1	Motility by hanging drop method.

SEM III

Microbiology Hons. (CBCS)

Syllabi module for Courses with Lectures

	2	2021-22			
Course / Paper	Class	Course	Course	Credit	
Name		Туре	Code		
Microbial	Semester III	Theory	Core T-5	4	
Physiology And					
Metabolism					
Broad Topic	Lecture		Lecture To	pic	
r i i i i i i i i i i i i i i i i i i i	Number				
	Lecture 1	Definitions	of growth,	measurement of	
		microbial growth, Batch culture,			
		Continuous	Continuous culture, generation time and		
	specific growth rate, synchronous				
		diauxic gro	wth curve		
Microbial Growth	Lecture 2	Microbial	growth in	response to	
and Effect of		environmer	nt	-Temperature	
Environment on		(psychroph	iles, mesophile	es, thermophiles,	
Microbial Growth		extremophi	les,	thermodurics,	
		psychrotrop	phs), pH	(acidophiles,	
		alkaliphiles	<u>s)</u>	. /1 1 1 1	
	Lecture 3	Solute and	d water acti	vity (halophiles,	
		xerophiles,	osmophilic),	Oxygen (aerobic,	
		anaerobic,		illic, lacultative	
	Looturo 4	Microbial a	mouth in room		
	Lecture 4	Microbial g	Definition wi	th example only)	
		- Autotroph/Phototroph, heterotroph,			
		Chemolithoautotroph			
		Chemolitho	heterotroph.		
		Chemohete	rotroph, (Chemolithotroph,	
		photolithoa	utotroph,	1 /	
		Photoorgan	oheterotroph		
	Lecture 5	Passive and	l facilitated dif	fusion	
Nutrient uptake and	Lecture 6	Primary an	nd secondary	active transport,	
Transport		concept of	uniport, sympo	ort and antiport	
	Lecture 7	Group tran	slocation. Iron	uptake.	
	Lecture 8	Concept o	f aerobic res	spiration. Sugar	
Chemoheterotrophic		degradation	n pathways i.e.	EMP, ED	
Metabolism -	Lecture 9	Pentose pho	osphate pathwa	y. TCA cycle	
Aerobic Respiration	Lecture 10	Electron tr	ansport chain	components of	
		respiratory	chain, o	comparison of	
		mitochondi	rial and bacter	ial ETC,	
		Electron tra	ansport phosp	horylation.	

	Lecture 11	Anaerobic respiration with special
Chemoheterotrophic		reference to dissimilatory nitrate
Metabolism-		reduction (Denitrification; nitrate
Anaerobic		/nitrite and nitrate/ammonia respiration;
respiration and		fermentative nitrate reduction)
fermentation	Lecture 12	Fermentation - Alcohol fermentation and
		Pasteur effect
	Lecture 13	Lactate fermentation (homofermentative
		and heterofermentative pathways),
		concept of linear and branched
		fermentation pathways
Chemolithotrophic	Lecture 14	Introduction to aerobic and anaerobic
and Phototrophic		chemolithotrophy with an example each.
Metabolism		Hydrogen oxidation (definition and
		reaction) and methanogenesis (definition
		and reaction)
	Lecture 15	Introduction to phototrophic metabolism -
		groups of phototrophic microorganisms,
		anoxygenic vs. oxygenic photosynthesis
	Lecture 16	Photosynthesis in green bacteria, purple
		bacteria and cyanobacteria
Nitrogen	Lecture 17	Introduction to biological nitrogen fixation
Metabolism - an	Lecture 18	Ammonia assimilation. Assimilatory
overview		nitrate reduction
	Lecture 19	dissimilatory nitrate reduction,
		denitrification

Course / Paper Name	Class	Course Type	Course Code	Credit
Microbial Physiology And Metabolism	Semester III	Practical	Core P-5	2

Exp. Number	Class Plan	No. of Classes allotted	Experiment Name		
Exp. 1	Week 1	2	Study and plot the growth curve of <i>E. coli</i> by turbidometric and standard plate count methods		
Exp.2	Week 2	1	Calculations of generation time and specific growth rate of bacteria from the graph plotted with the given data		
Exp. 3	Week 3	2	Effect of temperature on growth of <i>E. coli</i>		
Exp. 4	Week 4	2	Effect of pH on growth of <i>E. coli</i>		
Exp. 5	Week 5	2	Effect of carbon and nitrogen sources on growth of <i>E.coli</i>		
Exp.6	Week 8	2	Effect of salt on growth of <i>E. coli</i>		
Exp. 7	Week 9	1	Demonstration of alcoholic fermentation		
Exp. 8	Week 10	2	Demonstration of the thermal death time and decimal reduction time of <i>E. coli</i> .		

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Cell Biology	Semester III	Theory	Core T-6	4

Broad Topic	Lecture	Lecture Topic
	Number	
	Lecture 1	Cell Organization – Eukaryotic and prokaryotic
	Lecture 2	Plasma membrane: Structure and transport of
Structure		small molecules
and	Lecture 3	Cell Wall: Eukaryotic cell wall, Extra cellular
organization		matrix and cell matrix interactions
of Cell	Lecture 4	Mitochondria, chloroplasts and peroxisomes
	Lecture 5	Cytoskeleton: Structure and organization of actin filaments, association of actin filaments with plasma membrane
Nucleus	Lecture 6	Nuclear envelope, nuclear pore complex and nuclear lamina
	Lecture 7	Chromatin – Molecular organization Nucleolus
	Lecture 8	Ribosomes, Endoplasmic Reticulum – Structure, targeting and insertion of proteins in the ER
Protein Sorting and Transport	Lecture 9	Protein folding, processing and quality control in ER, Smooth ER and lipid synthesis, Export of proteins and lipids from ER
	Lecture 10	Golgi Apparatus – Organization, protein glycosylation, protein sorting and export from Golgi Apparatus, Lysosomes
Cell	Lecture 11	Modes of Cell to Cell Signalling, Signalling molecules and their receptors
Signalling	Lecture 13	Function of cell surface receptors
	Lecture 14	Pathways of intra-cellular receptors – Cyclic AMP pathway, cyclic GMP and MAP Kinase pathway
	Lecture 15	Regulation of Programmed cell death
Cell Cycle,	Lecture 16	Interferon and their mode of action
Cell Death	Lecture 17	Development of cancer, causes and types, p53
and Cell		gene product
Renewal	Lecture 18	Stem cells, Embryonic stem cell, induced pleuripotent stem cells

Course / Paper Name	Class	Course Type	Course Code	Credit
Cell Biology	Semester III	Practical	Core P-6	2

Exp.	Class	No. of	
Number	Plan	Classes	Experiment Name
		allotted	
Exp. 1	Week 1	1	Study a representative plant cell by microscopy
Exp. 1	Week 2	1	Study a representative animal cell by microscopy
Exp. 2	Week 3	1	Study of the structure of cell organelles through
			electron micrographs
Exp. 3	Week 4	1	Cytochemical staining of DNA – Feulgen
Exp. 4	Week 5	1	Identification and study of cancer cells by
			photomicrographs
Exp.5	Week 6	1	Study of different stages of Mitosis
Exp. 6	Week 7	1	Study of different stages of Meiosis

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Molecular Biology	Semester III	Theory	Core T-7	4

Broad Topic	Lecture	Lecture Topic		
	Number			
	Lecture 1	DNA Structure: Miescher to Watson and		
		Crick- historic perspective, DNA structure,		
Structures of		Salient features of double helix, Types of DNA		
DNA and RNA /	Lecture 2	Types of genetic material, denaturation and		
Genetic		renaturation, cot curves. DNA topology -		
Material		linking number, topoisomerases		
	Lecture 3	Organization of Genome: Prokaryotes (E. coli),		
		Viruses (DNA virus-SV40, RNA virus-HIV)		
	Lecture 4	Eukaryotes (S.cerevisiae). RNA Structure		
	Lecture 5	Organelle DNA – mitochondria and chloroplast		
		DNA		
	Lecture 6	Bidirectional and unidirectional replication,		
		semi- conservative, semi- discontinuous		
Replication of		replication		
DNA	Lecture 7	Mechanism of DNA replication: Enzymes and		
(Prokaryotes		proteins involved in DNA replication -DNA		
and		polymerases, DNA ligase, primase, telomerase		
Eukaryotes)	Lecture 8	Various models of DNA replication including		
		rolling circle, Θ (theta) mode of replication		
	Lecture 9	9 Mismatch and excision repair		
	Lecture 10	Transcription: Definition, difference from		
Transcription		replication, promoter - concept and strength		
in Prokaryotes		of promoter		
and	Lecture 11	RNA Polymerase and the Prokaryotic		
Eukaryotes		transcription unit		
	Lecture 12	Transcription in Eukaryotes: RNA		
		polymerases, general Transcription factors		
	Lecture 13	Split genes, concept of introns and exons		
Post-	Lecture 14	RNA splicing, spliceosome machinery, concept		
Transcriptional		of alternative splicing,		
Processing	Lecture 15	Polyadenylation and capping, Processing of		
		rRNA		
	Lecture 16	RNA interference: si RNA, its significance in		
		brief		
	Lecture 17	Translational machinery, Charging of tRNA,		

Translation		aminoacyl tRNA synthetases			
(Prokaryotes	Lecture 18	Mechanisms of initiation, elongation and			
and		termination of polypeptides in prokaryotes			
Eukaryotes)	Lecture 19	Mechanisms of initiation, elongation and			
		termination of polypeptides in eukaryotes			
	Lecture 20	Inhibitors of protein synthesis in prokaryotes			
		and eukaryote.			
Regulation of	Lecture 21	Principles of transcriptional regulation			
gene	Lecture 22	regulation at initiation in lac operon			
Expression in	Lecture 23	regulation at initiation in trp operons			
Prokaryotes	Lecture 24	Changes in Chromatin Structure -DNA			
and		methylation and Histone Acetylation			
Eukaryotes		mechanisms			

Course / Paper Name	Class	Course Type	Course Code	Credit
Molecular Biology	Semester III	Practical	Core P-7	2

Exp.	Class	No. of			
Number	Plan	Classes	Experiment Name		
		allotted			
Exp. 1	Week 1	1	Study of different types of DNA and RNA using		
			micrographs and model / schematic		
			representations		
Exp. 2	Week 2	1	Study of semi-conservative replication of DNA		
			through micrographs / schematic representations		
Exp. 3	Week 3	1	Isolation of genomic DNA from E. coli		
Exp. 4	Week 4	1	Estimation of salmon sperm / calf thymus DNA		
			using colorimeter (diphenylamine reagent) or UV		
			spectrophotometer (A260 measurement)		
Exp.5	Week 5	1	Estimation of RNA using colorimeter (orcinol		
			reagent) or UV spectrophotometer (A		
			260measurement)		
Exp.6	Week 6	1	Resolution and visualization of DNA by Agarose Gel		
			Electrophoresis.		
Exp. 7	Week 7	1	Resolution and visualization of proteins by		
			Polyacrylamide Gel Electrophoresis (SDS-PAGE).		

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

2021-	22
-------	----

Course / Paper	Class	Course	Course	Credit
name		туре	Coue	
Microbiological	Semester III	Theory	SEC-1	4
Analysis of Air &				
Water				

Broad Topic	Lecture	Lecture Topic	
	Number		
	Lecture 1	Bioaerosols, Air borne microorganisms	
		(bacteria, Viruses, fungi, each from every	
		category) and their impact on human	
Aero		health & environment	
microbiology	Lecture 2	Significance of air borne microorganisms	
		in food and pharma industries and	
		operation theatres, allergens.	
Air Sample	Lecture 3	Bioaerosol sampling, air samplers,	
Collection and		methods of analysis, CFU	
Analysis	Lecture 4	media for bacteria and fungi,	
		Identification characteristics	
Control	Lecture 5	Fate of bioaerosols, inactivation	
Measures		mechanisms – UV light, HEPA filters	
	Lecture 6	Inactivation mechanisms –desiccation,	
		Incineration	
Water	Lecture 7	Water borne pathogens	
Microbiology	Lecture 8	water borne diseases	
	Lecture 9	Mode of viral transmission	
	Lecture 10	Sample Collection, Treatment and safety	
Microbiological		of drinking (potable) water	
Analysis of	Lecture 11	standard qualitative procedure:	
Water		presumptive/MPN tests, confirmed and	
		completed tests for faecal coliforms	
	Lecture 12	Membrane filter technique and (c)	
		Presence/absence tests	
Control	Lecture 13	Precipitation, , filtration, high	
Measures		temperature, UV light	
	Lecture 14	Chemical disinfection	

SEM V

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Industrial Microbiology	Semester V	Theory	Core T-11	4

Broad Topic	Lecture	Lecture Topic	
	Number		
Introduction	Lecture 1	Brief history of industrial microbiology	
to industrial	Lecture 2	Developments in industrial microbiology	
microbiology	L a stanus O		
Isolation of	Lecture 3	Sources of industrially important microbes and	
industrially		methods for their isolation, preservation and	
important		maintenance of industrial strains, strain	
microbial		improvement	
strains and	Lecture 4	Crude and synthetic media; molasses, corn	
fermentation		steep liquor, sulphite waste liquor, whey, yeast	
media		extract and protein hydrolysates	
	Lecture 5	Types of fermentation processes - Solid-state	
Types of		and liquid-state (stationary and submerged)	
fermentation	Lecture 6	Batch, fed-batch (eg. baker's yeast) and	
processes,		continuous fermentations	
bio-reactors	Lecture 7	Components of a typical bio-reactor, Types of	
and		Bioreactors-Laboratory, pilot- scale and	
measurement		production fermenters	
of	Lecture 8	Stirred tank and air-lift fermenters	
fermentation	Lecture 9	Measurement and control of fermentation	
parameters		parameters - pH, temperature, dissolved	
		oxygen, foaming and aeration.	
Down-stream	Lecture 10	Cell disruption, filtration, centrifugation	
processing	Lecture 11	Solvent extraction, precipitation	
	Lecture 12	Lyophilisation and spray drying.	
	Lecture 13	Production of Citric acid, & glutamic acid,	
Microbial			
production of	Lecture 14	Production of ethanol, penicillin & Vitamin	
industrial		B12	
products	Lecture 15	Production of Enzymes (amylase, protease)	
	Lecture 16	Production of Wine & beer	
Enzyme	Lecture 17	Methods of immobilization, advantages and	
immobilization		applications of immobilization	
	Lecture 18	scale applications of immobilized enzymes	
		(glucose isomerase)	

Course / Paper Name	Class	Course Type	Course Code	Credit
Industrial Microbiology	Semester V	Practical	Core P-11	2

Exp.	Class	No. of	
Number	Plan	Classes	Experiment Name
		allotted	-
Exp. 1	Week 1	1	Study different parts of fermenter
Exp. 2	Week 2	1	Microbial fermentations for the production and
			estimation (qualitative and quantitative) of:
			Enzymes: Amylase
Exp. 2	Week 3	1	Microbial fermentations for the production and
			estimation (qualitative and quantitative) of:
			Enzymes: Protease
Exp. 2	Week 4	1	Microbial fermentations for the production and
			estimation (qualitative and quantitative) of: Amino
			acid: Glutamic acid
Exp. 2	Week 5	1	Microbial fermentations for the production and
			estimation (qualitative and quantitative) of: Organic
			acid: Citric acid
Exp.2	Week 6	1	Microbial fermentations for the production and
			estimation (qualitative and quantitative) of: Alcohol:
			Ethanol
Exp.3	Between		A visit to any educational institute/industry.
_	Week		
	15 to		
	Week		
	20		

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Immunology	Semester V	Theory	Core T-12	4

Broad Topic	Lecture	Lecture Topic
	Number	
	Lecture 1	Fundamental concept of Innate and
		Adaptive immunity
	Lecture 2	Contributions of following scientists to the
Introduction		development of field of immunology -
		Edward Jenner, Louis Pasteur, Karl
		Landsteiner, Robert Koch,
	Lecture 3	Contributions of following scientists to the
		development of field of immunology - Paul
		Ehrlich, Elie Metchnikoff, Peter Medawar,
		MacFarlane Burnet and Rodney Porter
	Lecture 4	Structure, Functions and Properties of:
Immune Cells and		Immune Cells –B cell, T cell
Organs	Lecture 5	NK cell, Macrophage, Dendritic cell, Stem
		cell
	Lecture 6	Immune Organs - Bone Marrow, Thymus,
		Lymph Node, Spleen
	Lecture 7	Characteristics of an antigen; T-dependent
Antigens		and T-independent antigens
	Lecture 8	Concept of Epitopes, Adjuvants, Haptens,
		Carrier
	Lecture 9	Structure, and Functions of antibodies
Antibodies	Lecture 10	Types of antibodies
	Lecture 11	Production and Clinical uses of Monoclonal
		antibodies
Major	Lecture 12	Organization of MHC locus (Mice &
Histocompatibility		Human)
Complex	Lecture 13	Structure and Functions of MHC I & II
		molecules
	Lecture 14	Components of the Complement system
Complement	Lecture 15	Complement Activation pathways
System		(Classical, Alternative and Lectin
		pathways)
	Lecture 16	Biological consequences of complement
		Activation
Generation of	Lecture 17	Generation of Humoral and Cell Mediated

Immune Response	Immune Response			
	Lecture 18	Antibody dependent cellular cytotoxicity		
		(ADCC)		
Types of	Lecture 19	Characteristics and functions of Active and		
Immunization		Passive Immunization		
Immunological	Lecture 20	Principles of Precipitation, Agglutination		
Techniques	Lecture 21	Immunodiffusion, Immunoelectrophoresis, ELISA,		

Course / Paper Name	Class	Course Type	Course Code	Credit
Immunology	Semester V	Practical	Core P-12	2

Exp. Number	Class Plan	No. of Classes	Experiment Name
Exp. 1	Week 1	1	Identification of human blood groups
Exp. 2	Week 2	1	Perform Total Leukocyte Count of the given blood
-			sample
Exp. 3	Week 3	1	Separate serum from the blood sample
			(demonstration)
Exp. 4	Week 4	1	Demonstration of immunoelectrophoresis
Exp. 5	Week 5	1	Perform immunodiffusion by Ouchterlony method
Exp.6	Week 6	1	Perform DOT ELISA

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

2021-22					
Course / Paper Name	Class	Course Type	Course Code	Credit	
Bioinformatics	Semester V	Theory	DSE-1	4	

Broad Topic	Lecture Number	Lecture Topic
Introduction to	Lecture 1	RDBMS - Definition of relational database
Computer	Lecture 2	Mode of data transfer (FTP, SFTP, SCP),
Fundamentals		advantage of encrypted data transfer
	Lecture 3	Biological databases - nucleic acid, genome,
Introduction		protein sequence and structure, gene
to		expression databases, Database of metabolic
Bioinformatics		pathways
and Biological	Lecture 4	Mode of data storage - File formats - FASTA
Datahases	Decture	Genhank
Databases		and Uniprot
-	Tastana C	Dete submission ⁰ netwinel from NODI
	Lecture 5	EMBL, DDBJ, Uniprot, PDB
	Lecture 6	Local and Global Sequence alignment.
		pairwise and multiple sequence alignment
Sequence	Lecture 7	Scoring on alignment scoring matrices PAM
Alignments	Lecture 7	& PLOSUM series of matrices
Dhulogonu and		& BLOSOM Series of matrices
Phylogeny and	Lecture 8	Types of phylogenetic trees, Different
Phylogenetic		approaches of phylogenetic tree construction -
trees		UPGMA. Neighbour joining
	Lecture 9	phylogenetic tree construction - Maximum
	Deeture	Parsomony, Maximum likelihood
	Lecture 10	Diversity of Genomes: Viral, prokaryotic &
Genome		eukaryotic genomes
organization	Lecture 11	Genome, transcriptome, proteome,
and analysis	Lecture 13	2-D gel electrophoresis & MaldiToff
		spectroscopy
	Lecture 14	Major features of completed genomes: E.coli.
		S.cerevisiae. Arabidopsis. Human
	Lecture 15	Hierarchy of protein structure - primary
	Decture 10	secondary and tertiary structures
Drotoin	Lootumo 16	Modelling Structures Metife Folds
Protein	Lecture 16	Modeling Structural Classes, Motils, Folds
Structure		and Domains
Predictions	Lecture 17	Protein structure prediction in presence and
		absence of structure template
	Lecture 18	Energy minimizations and evaluation by
		Ramachandran plot
	Lecture 19	Protein structure and rational drug design

Course / Paper Name	Class	Course Type	Course Code	Credit
Bioinformatics	Semester V	Practical	DSE-1	2

Exp.	Class	No. of			
Number	Plan	Classes	Experiment Name		
		allotted			
Exp. 1	Week 1	1	Introduction to different operating systems - UNIX,		
			LINUX and Windows		
Exp. 2	Week 2	2	Introduction to bioinformatics databases (any		
			three): NCBI/PDB/DDBJ, Uniprot, PDB		
Exp. 3	Week 3	1	Sequence retrieval using BLAST		
Exp. 4	Week 4	1	Sequence alignment & phylogenetic analysis using		
			clustalW & phylip		
Exp. 5	Week 5	1	Picking out a given gene from genomes using		
			Genscan or other softwares (promoter region		
			identification, repeat in genome, ORF prediction).		
Exp.5	Week 6	1	Gene finding tools (Glimmer, GENSCAN), Primer		
			designing, Genscan/Genetool		
Exp. 6	Week 7	1	Protein structure prediction: primary structure		
			analysis, secondary structure prediction using		
			psipred, homology modeling using Swissmodel		
Exp. 7	Week 8	1	Molecular visualization using jmol, Protein		
			structure model evaluation (PROCHECK)		
Exp.8	Week 9	2	Prediction of different features of a functional gene		